Primer on Climate Change
The Earth's climate has changed many times during the planet's long history, with events ranging from ice ages to extensive periods of warmth. Historically, natural factors such as volcanic eruptions, changes in the Earth's orbit, and the amount of energy released from the Sun have affected the Earth's climate. Beginning late in the 18th century, human activities associated with the Industrial Revolution have also changed the composition of the atmosphere and therefore very likely are influencing the Earth's climate.
During the past century humans have substantially added to the amount of greenhouse gases in the atmosphere by burning fossil fuels such as coal, natural gas, oil and gasoline to power our cars, factories, utilities and appliances. The added gases — primarily carbon dioxide and methane — are enhancing the natural greenhouse effect, and likely contributing to an increase in global average temperature and related climate changes.
Scientific Evidence of Global Warming
Greenhouse gases are necessary to life as we know it, because they keep the planet's surface warmer than it otherwise would be. But, as the concentrations of these gases continue to increase in the atmosphere, the Earth's temperature is climbing above past levels. According to NOAA and NASA data, the Earth's average surface temperature has increased by about 1.2 to 1.4ºF in the last 100 years. Eleven of the last twelve years rank among the 12 warmest years on record (since 1850), with the warmest two years being 1998 and 2005. Most of the warming in recent decades is very likely the result of human activities. Other aspects of the climate are also changing such as rainfall patterns, snow and ice cover, and sea level.
If greenhouse gases continue to increase, climate models predict that the average temperature at the Earth's surface could increase from 3.2 to 7.2ºF above 1990 levels by the end of this century. Scientists are certain that human activities are changing the composition of the atmosphere, and that increasing the concentration of greenhouse gases will change the planet's climate. But they are not sure by how much it will change, at what rate it will change, or what the exact effects will be.
Some greenhouse gases such as carbon dioxide occur naturally and are emitted to the atmosphere through natural processes and human activities. Other greenhouse gases (e.g., fluorinated gases) are created and emitted solely through human activities. The principal greenhouse gases that enter the atmosphere because of human activities are:
- Carbon Dioxide (CO2): Carbon dioxide enters the atmosphere through the burning of fossil fuels (oil, natural gas, and coal), solid waste, trees and wood products, and also as a result of other chemical reactions (e.g., manufacture of cement). Carbon dioxide is also removed from the atmosphere (or “sequestered”) when it is absorbed by plants as part of the biological carbon cycle.
- Methane (CH4): Methane is emitted during the production and transport of coal, natural gas, and oil. Methane emissions also result from livestock and other agricultural practices and by the decay of organic waste in municipal solid waste landfills.
- Nitrous Oxide (N2O): Nitrous oxide is emitted during agricultural and industrial activities, as well as during combustion of fossil fuels and solid waste.
- Fluorinated Gases: Hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride are synthetic, powerful greenhouse gases that are emitted from a variety of industrial processes. Fluorinated gases are sometimes used as substitutes for ozone-depleting substances (i.e., CFCs, HCFCs, and halons). These gases are typically emitted in smaller quantities, but because they are potent greenhouse gases, they are sometimes referred to as High Global Warming Potential gases (“High GWP gases”).
Climate change affects people, plants, and animals. Scientists are working to better understand future climate change and how the effects will vary by region and over time.
Scientists have observed that some changes are already occurring. Observed effects include sea level rise, shrinking glaciers, changes in the range and distribution of plants and animals, trees blooming earlier, lengthening of growing seasons, ice on rivers and lakes freezing later and breaking up earlier, and thawing of permafrost. Another key issue being studied is how societies and the Earth's environment will adapt to or cope with climate change.
Scientists know with virtual certainty that:
- Human activities are changing the composition of Earth's atmosphere. Increasing levels of greenhouse gases like carbon dioxide (CO2) in the atmosphere since pre-industrial times are well-documented and understood.
- The atmospheric buildup of CO2 and other greenhouse gases is largely the result of human activities such as the burning of fossil fuels.
- An “unequivocal” warming trend of about 1.0 to 1.7°F occurred from 1906-2005. Warming occurred in both the Northern and Southern Hemispheres, and over the oceans.
- The major greenhouse gases emitted by human activities remain in the atmosphere for periods ranging from decades to centuries. It is therefore virtually certain that atmospheric concentrations of greenhouse gases will continue to rise over the next few decades.
- Increasing greenhouse gas concentrations tend to warm the planet